Mathematical modelling of nutrient balance of a goldfish (Carassius auratus Linn.) recirculating aquaculture system (GRAS)
Keywords:
Goldfish, recirculating aquaculture system, plug flow reactor
Abstract
In the present study, a goldfish (Carassius auratus Linn.) recirculating aquaculture system (GRAS) has been developed. The GRAS consisted of a culture tank, a screen filter and a foam fractionator for removal of particulate and dissolved solids and a trickling filter for conversion of ammonium- and nitrite-nitrogen to relatively harmless nitrate-nitrogen. The culture of goldfish at a stocking density of 1.08 kg/m3 was continued for a period of two and half months. Based on mass balance analysis of ammonium- and nitrate-nitrogen and assuming the trickling filter to be a plug flow reactor, a model was formulated to determine the necessary recirculation flow rate at different times of culture for maintaining the major nutrients, viz., ammonium- and nitrate-nitrogen below their permissible limits. The model was calibrated and validated using the real time data obtained from the experimental run. The high values of coefficient of determination and low values of root mean square error show the effectiveness of the model.
Published
25/08/2010
Issue
Section
Papers
Authors maintain the copyrights for their work. However, they grant rights of first publication to Ambiente e Agua - An Interdisciplinary Journal of Applied Science. In compensation, the journal can transfer the copyrights, allowing non-commercial use of the article including the right of sending the article to other data bases or publication media. The journal uses the CC BY 4.0 license"